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Dynamic oligopoly theory 
 
Collusion – price coordination 
 
Illegal in most countries 

- Explicit collusion not feasible 
- Legal exemptions 

 
Recent EU cases 

- Switchgears – approx 750 mill Euros in fines 
(January 2007) 

- Elevators – approx 1 billion Euros (February 2007) 
- Rubber additives – approx 250 mill Euros (May 

2007). 
 
Tacit collusion 
 

Hard to detect – not many cases. 
 
Repeated interaction 
 
Theory of repeated games 
 
Deviation from an agreement to set high prices has 

- a short-term gain: increased profit today 
- a long-term loss: deviation by the others later on 

 
Tacit collusion occurs when 
 long-term loss > short-term gain 
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Model  
 
Two firms, homogeneous good, C(q) = cq 
 
 
Prices in period t: (p1t, p2t) 
 
Profits in period t: π1(p1t, p2t), π2(p1t, p2t) 
 
History at time t: Ht = (p10, p20, …, p1, t – 1, p2, t – 1) 
 
 
A firm’s strategy is a rule that assigns a price to every 
possible history. 
 
A subgame-perfect equilibrium is a pair of strategies that 
are in equilibrium after every possible history: Given one 
firm’s strategy, for each possible history, the other firm’s 
strategy maximizes the net present value of profits from 
then on. 
 
 
T – number of periods 
 
 
T finite: a unique equilibrium 
 period T: p1T = p2T = c, irrespective of HT. 
 period T – 1: the same 
 and so on 
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T infinite (or indefinite) 
 
At period τ, firm i maximizes 
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The best response to (c, …) is (c, …). 
 
But do we have other equilibria? 
Can p > c be sustained in equilibrium? 
 
 
Trigger strategies: If a firm deviates in period t, then both 
firms set p = c from period t + 1 until infinity. 
 [Optimal punishment schemes? Abreu J Econ Th 1986] 
 
 
Monopoly price: pm = arg max (p – c)D(p) 
Monopoly profit: πm = (pm – c)D(pm) 
 
 
A trigger strategy for firm 1: 
 
• Set p10 = pm in period 0 
• In the periods thereafter, 

 p1t(Ht) = pm, if Ht = (pm, pm, …, pm, pm) 
 p1t(Ht) = c, otherwise 
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If a firm collaborates, it sets p = pm and earns πm/2 in every 
period. 
 
The optimum deviation: pm – ε, yielding ≈ πm for one 
period. 
 
An equilibrium in trigger strategies exists if: 
 

2

mπ (1 + δ + δ2 + … ) ≥ πm + 0 + 0 + … 
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The same argument applies to collusion on any price p ∈ 
(c, pm]. ⇒ Infinitely many equilibria. 
 
 
The Folk Theorem. 

π2 

π1
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Collusion when demand varies 
 
Demand stochastic. 
 
Periodic demand is 

low: D1(p) with probability ½ 
high: D2(p) with probability ½ 
D1(p) < D2(p), ∀ p. 

 
The demand shocks are i.i.d. 
 
Each firm sets its price after having observed demand. 
 
What are the best collusive strategies for the two firms? 
Trigger strategies: A deviation is followed by p = c forever. 
 
What are the best collusive prices? One price in low-
demand periods and one in high-demand periods: p1 and p2. 
 
πs(p) – total industry profit in state s when both firms set p. 
 
With prices p1 and p2 in the two states, each firm’s 
expected net present value is: 
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The best possible collusive price in state s is: 
ps

m = arg max (p – c)Ds(p), s = 1, 2. 
 
 πs

m = (ps
m – c)Ds(ps

m), s = 1, 2. 
 
If the firms can collude on these prices, then: 
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A deviation in state s receives a gain equal to: πs

m 
 

For (p1
m, p2

m) to be equilibrium prices, we must have: 
  πs

m ≤ ½πs
m + δV  ⇔  πs

m ≤ 2δV 
 
The difficulty is state 2 (high-demand), since π1

m < π2
m. 

 
The equilibrium condition becomes: 
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But what if δ ∈ [
2
1 , δ0)? Can we still find prices at which 

the firms can collude? 
 
The problem is again state 2. We need to set p2 so that  
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So: prices below monopoly price in high-demand state – 
during boom. Could even be that p2 < p1. 
 
But is this a price war? 
 
More realistic demand conditions: 
Autocorrelation – business cycle. 
Collusion most difficult to sustain just as the downturn 
starts. 
 
 Haltiwanger & Harrington, RAND J Econ 1991 
 Kandori, Rev Econ Stud 1991 
 
 
 Bagwell & Staiger, RAND J Econ 1997 
 
 
[Exercise 6.4] 
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Empirical studies of collusion 
 
 
• the railroad cartel 

- Porter Bell J Econ 1983 
- Ellison RAND J Econ 1994  

 
• collusion among petrol stations 

- Slade Rev Econ Stud 1992 
 
• collusion in the soft-drink market: prices and advertising 

- Gasmi, et al., J Econ & Manag Strat 1992 
 
• collusion in procurement auctions 

- Porter & Zona J Pol Econ 1993 (road construction) 
- Pesendorfer Rev Econ Stud 2000 (school milk) 

 
 
 
Infrequent interaction 
 
Suppose the period length doubles. 
 

δ →  δ2 
 
Collusion feasible if: 

 δ2 ≥ 
2
1    ⇔  

2
1

≥δ  ≈ 0.71 
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Multimarket contact 
 
Market A: Frequent interaction, period length 1. 
   Collusion if δ ≥ ½. 
 
Market B: Infrequent interaction, period length 2. 
    Collusion if δ2 ≥ ½. 
 
(How could frequency vary across markets?) 
 
What if both firms operate in both markets? 
Can the firms obtain collusion in both markets even in 
cases where δ2 < ½ < δ? 
 
A deviation is most profitable when both markets are open. 
 
Deviation yields: 2πm 
Collusion yields: 
  [πm/2] every period, plus 
  [πm/2] every second period (starting today) 
 
Collusion can be sustained if: 
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